NUSSKNACKER

NA, DIE ARTIKEL ZUR MESSTECHNIK GENAU GELESEN? DANN DÜRFTE DIESE KLEINE AUFGABE JA EIN KINDERSPIEL SEIN!

EURE AUFGABE:

Ermittle den Abgasverlust eines mit Erdgas betriebenen Heizkessels mit einer Nennwärmeleistung von 20 kW und interpretiere das Ergebnis entsprechend. Deine Messung ergab folgende Werte:

Raumlufttemperatur im Aufstellraum: 20 °C
Abgastemperatur im Kernstrom: 150 °C
Sauerstoffgehalt im Abgas: 6 %

Berechne den Abgasverlust nach dieser Formel (es handelt sich hierbei um die nach 1.BImSchV abgeänderte Siegert'sche Formel):

$$q_A = (t_A - t_L) \cdot (\frac{A}{21 - O_2} + B)$$

gette Sandari detti kantin

Es bedeuten:

• q_A = Abgasverlust in Prozent

• t_A = Abgastemperatur in Grad Celsius

t_L = Verbrennungslufttemperatur in Grad Celsius

• O₂ = Volumengehalt an Sauerstoff im Abgas in Prozent

• A, B = Brennstoffabhängige Konstanten (siehe Tabelle)

Brennstoffabhängige Konstante	Brennstoff		
	Heizöl EL	Propan, Flüssiggas	Erdgas
А	0,68	0,63	0,66
В	0,007	0,008	0,009

NUSSKNACKER

DIE LÖSUNG:

Ermittlung des Abgasverlustes:

$$q_A = (150 - 20) \cdot (\frac{0,66}{21 - 6} + 0,009)$$

$$q_A = (130) \cdot (\frac{0,66}{15} + 0,009)$$

$$q_A = (130) \cdot (0.044 + 0.009)$$

$$q_A = 130 \cdot 0,053$$

$$q_A = 6,89$$

Der Abgasverlust der Anlage beträgt 6,89 %, gerundet 7 %. Gemäß der 1. BlmSchV liegt dieser Wert bei einem Gas-Heizkessel mit einer Nennwärmeleistung von 20 kW innerhalb des vorgeschriebenen Grenzbereichs.